skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Karki_Chhetri, Santosh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recently, layered transition metal thiophosphate MPX3(M= transition metals,X= S or Se) have gained significant attention because of their rich magnetic, optical, and electronic properties. Specifically, the diverse magnetic structures and the robustness of magnetism in the two-dimensional (2D) limit have made them prominent candidates to study 2D magnetism. Numerous efforts such as substitutions and interlayer intercalations have been adopted to tune the magnetic properties of these materials, which has greatly deepened the understanding of the underlying mechanisms that govern the properties. In this work, we focus on modifying the magnetism of Ising-type antiferromagnet FePS3using electrochemical lithium intercalation. Our work demonstrate the effectiveness of electrochemical intercalation as a controllable tool to modulating magnetism, including tuning magnetic ordering temperature and inducing low temperature spin-glass state, offering an approach for implementing this material into applications. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026